CONAMA LOCAL VILADECANS 2025

Encuentro de Pueblos y Ciudades por la Sostenibilidad

Prevención y Control de la contaminación ambiental en Centros Urbanos por rellenos sanitarios

Energía y economía circular

CONAMA LOCAL **VILADECANS 2025**

Edita: Fundación Conama

Año: 2025

Este documento está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.

Personas autoras de la presente comunicación técnica

Autor Principal de la comunicación: Alejandro Abbate Lacourly. Profesional ambiental y docente investigador. Universidad Nacional del Litoral.

Índice.

1.	Resumen	1
	Introducción	
3.	Marco referencial	1
4.	Metodologia	4
5.	Resultados	4
6.	Conclusiones	11
7.	Bibliografía	11
8.	Anexo	11

1. Resumen.

Actualmente los países de América Latina y el Caribe denotan problemas de disposición final de sus residuos sólidos urbanos en donde solo el 46 % recibe una disposición final controlada en rellenos sanitarios. Un aspecto a evaluar en la localización de estas infraestructuras, es la restricción respecto a la distancia mínima con centros urbanos poblados, lo cual está contemplado en la mayoría de los reglamentos técnicos y legislaciones nacionales sobre la habilitación y el funcionamiento de los rellenos sanitarios, por el potencial impacto y daño ambiental que representa. El objetivo principal del trabajo fue identificar las principales medidas exigidas para evitar la contaminación ambiental en las ciudades durante el ciclo de vida del proyecto de relleno sanitario. Para ello se realizo la recopilación de diferentes reglamentos, normas y legislaciones existentes y se obtuvo un análisis comparativo entre los países, sobre aspectos de ingeniería y operacionales, donde se evaluó la distancia del relleno sanitario con los centros urbanos, existencia de áreas de amortiguación, el periodo de vida útil para las operaciones de recepción y disposición de residuos, el tiempo requerido para la etapa de post clausura y el posible uso final del sitio recuperado. Como resultado se identificaron veinte países con documentos específicos y se analizaron 43 documentos oficiales, como ser leyes marco (12 %), decretos (35 %), resoluciones (9 %), acuerdos (9 %), normas oficiales (16 %), reglamentos técnicos (5 %) y normas técnicas (14 %) y se determinó como consideraciones comunes, medidas de control de contaminación ambiental vinculadas al diseño e ingeniería, donde un 85 % de los países exigen como principal medida, mantener distancias mínimas respecto a los centros urbanos y en el resto de los casos no se especifica esa condición. Esas distancias varían entre 300 y 3000 metros según se trate de localidades pequeñas o de mayor tamaño poblacional. Además, en un poco más de un 50 % de los casos se contempla la necesidad de un área de amortiguación, protección o barrera, con diferentes distancias mínimas que varían desde los 10 metros e incluso llegan hasta los 500 y 1000 metros. En relación al periodo de operación y funcionamiento, solo en un 65 % de los países se menciona como exigencia un tiempo mínimo de vida útil del relleno sanitario, que oscila entre los 10 y 15 años, mientras que para la ultima etapa del proyecto, solo un 45 % de los países contempla un periodo mínimo de post clausura, luego del cierre técnico del sitio, comprendido entre los 15 y 30 años de duración. Vinculado a ello, se observó que el 65 % de los países hace referencia durante el diseño y planificación del proyecto, al aprovechamiento final del lugar finalizada la etapa de pos clausura, acorde al uso del suelo y posibilidades de desarrollo regional. Como principales medidas de control operativas para evitar la contaminación ambiental, se observó que en el 95 % de los países se exige la aplicación de un material de cobertura diario sobre los residuos y en el 70 % de los casos se deben utilizar métodos adecuados de compactación y disposición de residuos. Además, el 85 % requiere sistemas para el control de la dispersión de residuos por el viento, 70 % controlar la proliferación de plagas y vectores y un 50 % las emisiones de olores. No menor importante son los posibles siniestros y contingencias, donde se observó que el 75 % de los reglamentos hace hincapié en el control de incendios, a través de procedimientos de emergencias, programas de seguridad y planes de contingencias. Como complemento, la comparación también consideró cuestiones que pueden influir en el tiempo de duración de cada etapa, como ser las proyecciones de crecimiento poblacional y de generación de residuos, eficiencia de los programas de reciclaje y valorización de residuos, entre otros. Finalmente, se establecieron consideraciones particulares entre los reglamentos en base a los

CONAMA LOCAL VILADECANS 2025

aspectos considerados. Se concluyó que la mayoría de los reglamentos contemplan el potencial impacto ambiental que representa la existencia de un relleno sanitario en relación a la ubicación de un centro urbano o núcleo poblacional, lo cual debe ser considerado desde la etapa de anteproyecto de la infraestructura y evaluado mediante estudios específicos, siendo fundamental la identificación del perímetro urbano, zonas de expansión urbana y crecimiento urbanístico, que apunten a minimizar la incidencia adversa de los sitios de disposición final.

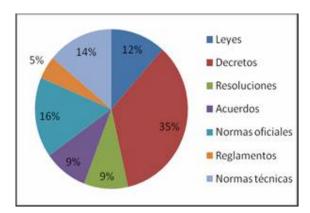
2. Introducción.

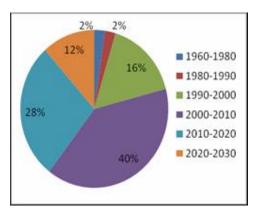
La disposición segura y confiable de los residuos sólidos es un componente importante de la gestión integral de residuos. Entre los métodos más conocidos para disponer los residuos sólidos, se consideran actualmente a los rellenos sanitarios como la mejor solución técnica, económica y ambiental [1]. No obstante a ello, los países de América Latina y el Caribe (ALC) denotan problemas de disposición final de sus residuos sólidos urbanos en donde solo el 46 % recibe una disposición final controlada en rellenos sanitarios [2]. Localizar un sitio adecuado para un relleno sanitario es una de las acciones más complejas para poder iniciar un proyecto de disposición final de residuos, desde un punto de vista de gestión integral. La disponibilidad del sitio define la viabilidad o no del proyecto [3]. Se plantea como problema que estas infraestructuras ambientales, que se caracterizan por sus importantes dimensiones y operaciones con residuos sólidos y donde se realiza la disposición final de grandes cantidades de residuos sólidos, si cuentan con las medidas de prevención y control de la contaminación ambiental, de manera de no afectar a los centros urbanos próximos. En tal sentido, en los últimos años han sido numerosos los episodios de contaminación ambiental en los rellenos sanitarios más importante de la región, afectando la calidad de vida de los habitantes. Por lo tanto, surge como pregunta de investigación ¿cuáles son las principales medidas de prevención y control en los rellenos sanitarios de ALC para evitar la contaminación ambiental?. El objetivo del trabajo fue identificar las principales medidas de prevención y control en rellenos sanitario de ALC para evitar la contaminación del ambiente. Para ello, se realizó un análisis comparativo entre los países sobre la información técnica y consideraciones contempladas en los reglamentos de rellenos sanitarios, respecto a distancias a mantener con los centros urbanos y las condiciones de ingeniería y operacionales a cumplimentar.

3. Marco referencial.

Un aspecto a evaluar en la localización de esta infraestructura es la restricción respecto a la distancia mínima con centros urbanos poblados, lo cual está contemplado en la mayoría de los reglamentos técnicos y legislaciones nacionales sobre la habilitación y el funcionamiento de los rellenos sanitarios, por el impacto ambiental que representa. Los factores ambientales están relacionados con las posibles alteraciones e impactos que el relleno sanitario puede generar sobre diferentes aspectos del medio. Entre ellos se puede mencionar la proximidad a centros urbanos y en tal sentido, la literatura sostiene que los centros de disposición final deberán ubicarse en sitios suficientemente alejados de áreas urbanas, de manera tal de no afectar la calidad de vida de la población y su emplazamiento deberá determinarse considerando la planificación territorial, el uso del suelo y la expansión urbana durante un lapso que incluya el período de post clausura.

La elección del lugar de emplazamiento es un elemento determinante en todo proyecto de relleno sanitario, puesto que va a condicionar su funcionamiento y explotación, tanto desde el punto de vista técnico como desde el ambiental e higiénico [1]. Es por ello, que la correcta elección de un sitio para establecer un relleno sanitario es clave para el éxito del proyecto y evitará que se ocasionen diversos problemas posteriores durante su operación.


La selección de un sitio para establecer un relleno es un proceso que tiene componentes técnicos, administrativos y políticos [4]. Para la localización de un relleno sanitario se deben tener en cuenta diferentes criterios, entre ellos la prevención de riesgos sanitarios y ambientales [3] y en función a ello, la evaluación del sitio debe considerar factores ambientales, técnicos, económicos, sociales y legales.


4. Metodología.

Se realizo la búsqueda de reglamentos técnicos a través de las páginas institucionales de organismos estatales nacionales, efectuando un recopilatorio de documentos que regulan el funcionamiento de rellenos sanitarios en veinte países de ALC, sean legislaciones y normas técnicas. Se procedió al procesamiento y análisis particular de cada reglamento y se identificó información específica sobre las distancia del relleno sanitario con los centros urbanos, aeropuertos, existencia de áreas de amortiguación, el periodo de vida útil para las operaciones de recepción y disposición de residuos, el tiempo requerido para la etapa de post clausura y el posible uso final del sitio recuperado. En función a ello, se contemplaron como aspectos de evaluación, exigencias de ingeniería y operación a cumplir en los rellenos sanitarios y se establecieron mediante comparación y frecuencias consideraciones comunes entre los diferentes países sobre las principales medidas de prevención y control de la contaminación ambiental.

5. Resultados.

Se identificaron 43 documentos sobre reglamentos de rellenos sanitarios en los países de ALC, sean leyes marco (12 %), decretos (35 %), resoluciones (9 %), acuerdos (9 %), normas oficiales (16 %), reglamentos técnicos (5 %) y normas técnicas (14 %) (Figura 1), la mayoría con vigencia en los periodos 1990-2000 (16 %), 2000-2010 (40 %), 2010-2020 (28 %) y 2020 en adelante un 12 % (figura 2). En el Anexo (cuadro 1) se detallan los documentos nacionales aplicados.

Figuras 1 y 2. Tipos y vigencia de reglamentos de rellenos sanitarios.

El análisis y procesamiento de la información técnica de los reglamentos, permitió identificar dos criterios de evaluación tanto para las cuestiones de ingeniería de la infraestructura como para el funcionamiento del sitio, mediante la definición de aspectos para cada uno de ellos, lo cual se puede observar en el cuadro 2.

Cuadro 2. Criterios y aspectos de evaluación.

Fuente: Elaboración propia.

Criterios	Aspectos de evaluación				
	Ubicación relleno sanitario				
Ingeniería	Diseño de la infraestructura				
Ingeniena	Estudios ambientales				
	Desarrollo urbano				
	Operación diaria				
	Manejo sanitario y ambiental				
Funcionamiento	Siniestros y contingencias				
	Factores de generación				
	Inclusión social				

Para cada uno de los aspectos de evaluación definidos en cada criterio, se establecieron componentes específicos que permitieron el abordaje del problema de la contaminación ambiental, los cuales de detallan a continuación en los cuadros 3 y 4.

Cuadro 3. Componentes de los aspectos de evaluación para el criterio de ingeniería.

Fuente: Elaboración propia.

Criterio	Aspectos de evaluación	Componentes
	Ubicación del relleno sanitario	Exigencias distancias mínimas relleno sanitario con centros urbanos. Exigencias distancias mínimas relleno sanitario con
la nanianta	Diseño de la infraestructura	aeropuertos. Exigencia cortina forestal. Exigencia zona de amortiguación.
Ingeniería		Sistema de evacuación agua de lluvia. Drenaje y control de inundaciones. Cercado perimetral.
	Estudios ambientales	Estudio de Impacto Ambiental Estudios climáticos e hidrológicos
	Desarrollo urbano	Uso final del sitio recuperado Integración urbanística

Cuadro 4. Componentes de los aspectos de evaluación para el criterio de funcionamiento.

Criterio	Aspectos de evaluación	Componentes
	Operación diaria	Exigencias aplicación de material de cobertura residuos. Exigencias métodos de compactación y disposición de residuos.
Funcionamiento	Manejo sanitario y ambiental	Exigencias plan de manejo ambiental. Manejo integrado de plagas. Generación de olores Control de lixiviados Control de dispersión de residuos Orden y limpieza
Tuncionamiento	Siniestros y contingencias	Control de incendios (humos) Explosiones (biogás) Accidentes laborales
	Factores de generación	Proyección de crecimiento poblacional. Proyección de generación de residuos Caracterización de residuos Prohibición ingreso residuos con cierta peligrosidad
	Inclusión social	Exigencias prohibición recuperación de residuos en frente de trabajo.

En lo relativo al aspecto de ubicación del relleno sanitario, lo cual es contemplado en los estudios ambientales previos en la etapa de planificación del proyecto, desde el punto de vista del criterio de ingeniería para el conjunto de países de ALC, como principales medidas de prevención de la contaminación ambiental, se determinó que un 85 % de los países exige mantener distancias mínimas respecto a los centros urbanos. Esas distancias varían entre 300 y 3.000 metros según se trate de localidades pequeñas o de mayor tamaño poblacional. Además, es fundamental considerar las distancias mínimas hacia aeropuertos y aeródromos, por el peligro aviario que representan las aves, lo cual es exigido en el 70 % de los países y se puede apreciar que no todos los reglamentos estipulan este tipo de restricciones. Finalmente, en un poco más de un 50 % de los casos se contempla la necesidad de un área de amortiguación, protección o barrera, con diferentes distancias mínimas que varían desde los 10 metros e incluso llegan hasta los 500 y 1.000 metros. A continuación en el cuadro 5 se detalla para cada país.

Cuadro 5. Comparativa entre países de distancias del relleno sanitario con centros urbanos y zona de amortiguación.

País	Exige distancia con centro urbano		Distancias exigidas (m)	Exige zona de amortiguación		Distancia exigida (m)	
	SI NO			SI	ОИ		
Argentina	Х		1000	Х		80	
Chile		Χ		Х		300	
Paraguay	Х		500	Х		500	
Bolivia	Х		3000	Х		30 a 50	
Uruguay		Х			Х		

Perú	Х		1000	X		1000
Brasil	X		500	X		10
Ecuador	Х		500		Х	500
Colombia	X		1000		Х	
Venezuela	X		3000		Х	
Panamá	Х		300	Х		300
Costa Rica	Х			Х		50
Nicaragua	Х		1000	X		1000
Honduras	X		1000		Х	
El Salvador	X		500		Х	
Guatemala	Х		250		Х	250
México	Х		500	X		10
R. Dominicana	X		1500	X		
Puerto Rico		Х			Х	
Cuba	Χ		1000		Х	

En la siguiente figura 3 se presenta un resumen de las consideraciones comunes para el criterio de ingeniería, incluyendo las cuestiones de diseño de la infraestructura, estudios ambientales previos y el desarrollo urbano. Es importante señalar, que realizar un Estudio de Impacto Ambiental solo se menciona en el 40 % de los casos y contemplar la variable climática de la dirección de los vientos predominantes se puntualiza en un 65 % de los reglamentos.

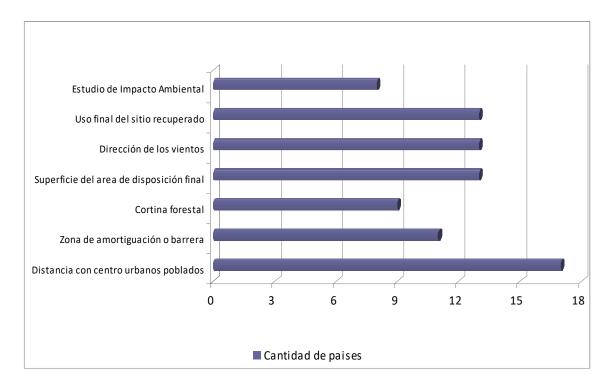


Figura 3. Consideraciones comunes para el criterio de ingeniería.

Con respecto a otros requerimientos del proyecto y en relación al criterio de funcionamiento, solo en un 65 % de los países se menciona como exigencia un tiempo mínimo de operación y vida útil del relleno sanitario, que oscila entre los 10 y 15 años, mientras que para la ultima etapa del proyecto, solo un 45 % de los países contempla un periodo mínimo de post clausura, luego del cierre técnico del sitio, comprendido entre los 15 y 30 años de duración. Vinculado a ello, se observó que el 65 % de los países hace referencia durante el diseño y planificación del proyecto, al aprovechamiento final del lugar finalizada la etapa de pos clausura, acorde al uso del suelo y posibilidades de desarrollo regional. A continuación en el cuadro 6 se detalla para cada país.

Cuadro 6. Comparativa entre países de periodos de tiempos para la operación y post clausura.

Fuente: Elaboración propia.

País	Exige Tiempo mínimo de operación		Tiempo exigido (años)	Exige tiempo de post clausura		Tiempo exigido (años)	Exige uso final del relleno	
	SI	NO		SI	NO		SI	NO
Argentina		X		Х		30	X	
Chile		X		X		20	X	
Paraguay	X		5		Х		X	
Bolivia	X		15	Χ		15	X	
Uruguay		Х			X			X
Perú	Х		5	Х		10	X	
Brasil	Х		10	Х		20	X	
Ecuador	Х		10		Х			X
Colombia	Х		30		Х		Х	
Venezuela		Х			X		Х	
Panamá	Х		15		Х		Х	
Costa Rica	Х		10	Х		20		X
Nicaragua	Х		10		Х		X	
Honduras	Х		10	Х		15	Х	
El Salvador	Х		10		Х			X
Guatemala	Х		15		Х			X
México		Х		Х		20	Х	
R. Dominicana		Х			Х			Х
Puerto Rico		Х		Х		30	Х	
Cuba	Χ		10		Х			Х

Como principales medidas de control operativas para evitar la contaminación ambiental, se observó que en el 95 % de los países se exige la aplicación de un material de cobertura diario sobre los residuos y en el 70 % de los casos se deben utilizar métodos adecuados de compactación y disposición de residuos. Además, el 85 % requiere sistemas para el control de la dispersión de residuos por el viento, 70 % controlar la proliferación de plagas y vectores y un 50 % las emisiones de olores. No menor importante son los posibles siniestros y contingencias, donde se observó que el 75 % de los reglamentos hace hincapié en el control de incendios (humos), a través de procedimientos de emergencias, programas de seguridad y planes de contingencias.

Como complemento, la comparación también consideró cuestiones que pueden influir en el tiempo de duración de cada etapa, como ser las proyecciones de crecimiento poblacional y de generación de residuos, eficiencia de los programas de reciclaje y valorización de residuos, entre otros. En las siguientes figuras 4, 5, 6 y 7 se presenta un resumen de las consideraciones comunes para el criterio de funcionamiento, incluyendo las cuestiones de operación diaria, plan de manejo sanitario y ambiental, siniestros y contingencias y factores de generación.

Figura 4. Consideraciones comunes de funcionamiento para aspecto de operación diaria.

Fuente: Elaboración propia.

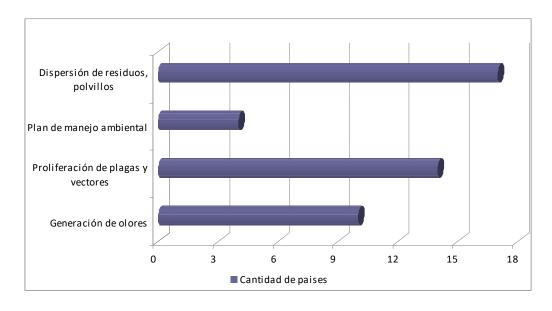


Figura 5. Consideraciones comunes de funcionamiento para aspecto de manejo ambiental.

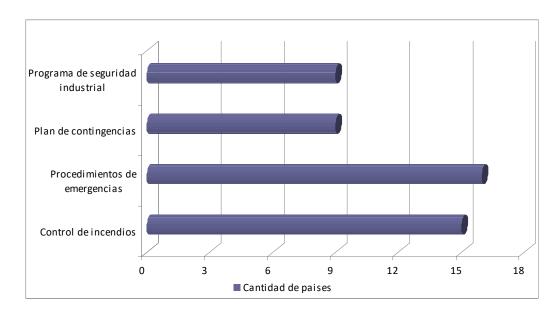


Figura 6. Consideraciones comunes de funcionamiento para aspectos de siniestros y contingencias.

Fuente: Elaboración propia.

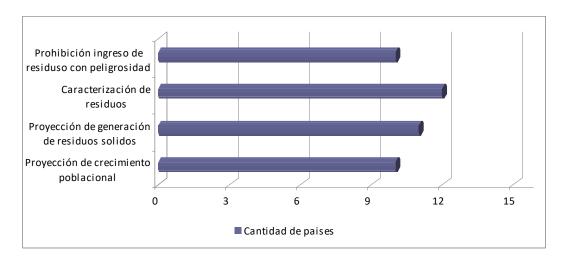


Figura 7. Consideraciones comunes de funcionamiento para aspecto de factores de generación e inclusión social.

6. Conclusiones.

Se concluyó que la mayoría de los reglamentos contemplan el potencial impacto ambiental que representa la existencia de un relleno sanitario en relación a la ubicación de un centro urbano o núcleo poblacional, lo cual debe ser considerado desde la etapa de anteproyecto de la infraestructura y evaluado mediante estudios específicos, siendo fundamental la identificación del perímetro urbano, zonas de expansión urbana y crecimiento urbanístico, que apunten a minimizar la incidencia adversa de los sitios de disposición final. La distancia entre el relleno sanitario y los centros urbanos constituye una de las principales y más importante limitantes de ubicación debido al peligro que significa la contaminación ambiental. Para reducir el riesgo de contaminación ambiental es necesario realizar estudios previos en la etapa de proyecto de la infraestructura, tales como hidrológicos, hidrogeológicos, topográficos, y climáticos. Es fundamental que los rellenos sanitarios dispongan de las infraestructuras necesarias y se cumplan los métodos adecuados de disposición diaria de residuos en los frentes de trabajo. Se destaca que prácticamente en todos los reglamentos se exigen las condiciones de ingeniería y en menor medida las operacionales, pero en la práctica denotan deficiencias técnicas que se deben procurar mejorar. En tal sentido, en los países se hace necesario el cumplimiento de los reglamentos vigentes.

7. Bibliografía.

- [1] Rondón Toro E., Szanto Narea M., Pacheco J., Contreras E., Galvez A., (2016). Guía general para la gestión de residuos sólidos domiciliarios. Manuales CEPAL Nº 2. Ministerio de Desarrollo Social de Chile y la CEPAL. p: 73-80.Bratanova *et al.* (2013): Bratanova, B., G.
- [2] Banco Interamericano de Desarrollo (BID) (2023). Evaluación regional de flujo de materiales: residuos sólidos municipales para América Latina y el Caribe EVAL 2023. Nota Técnica No IDB-TN-02804, División de agua y saneamiento. p: 38-39.
- [3] Ministerio de Medio Ambiente y Agua (MMAyA) (2012). Guía para el Diseño, Construcción, Operación, Mantenimiento y Cierre de Rellenos Sanitarios. Dirección General de gestión integral de residuos sólidos, Estado Plurinacional de Bolivia. p: 21-28.
- [4] Secretaría de Energía, Recursos Naturales, Ambiente y Minas (SERNA) (2014). Manual de Construcción y Operación de Rellenos Sanitarios en Honduras. Dirección general de gestión ambiental. República de Honduras. p: 30-32.

8. Anexo.

Cuadro 1: Detalle de los documentos nacionales aplicados.

N°	País	Nº	Legislación / norma	Año	Pág.
1	Argentina	1	Ley Nacional 25916	2004	8
	_	2	Resolución 1143 de Buenos Aires.	2002	11
		3	Ley de residuos 13055 de Santa Fe	2009	19
2	Chile	4	Decreto (DS) 189	2007	23
3	Paraguay	5	Resolución 282	2004	3
		6	Decreto reglamentario 7391	2017	69
4	Bolivia	7	Norma NB 757	1996	4
		8	Norma NB 760	1996	16
		9	Decreto Supremo 2954.	2016	22
5	Perú	10	Decreto Supremo Nº 6 STN.	1964	21
		11	Resolución Ministerial 109 MINSA	2006	30
		12	Decreto Supremo Nº 001-2022-MINAM	2022	32
6	Ecuador	13	Anexo 6 del Acuerdo Ministerial 097A	2003	26
7	Colombia	14	Decreto 0838	2005	17
		15	Decreto 1784	2017	13
		16	Resolución 0938	2019	8
8	Venezuela	17	Decreto 230	1990	19
		18	Ley nacional	2010	29
9	Panamá	19	Decreto Ejecutivo 275	2004	16
		20	Decreto Nº 156	2004	12
		21	Decreto Ejecutivo 462	2016	2
10	Nicaragua	22	Norma técnica NTON 05 013-01	2002	17
		23	Norma técnica NTON 05 014-02	2002	17
11	Costa Rica	24	Decreto 27378-S	1998	13
40	D (11: D ::	25	Decreto Ejecutivo 38928-S	2014	30
12	República Dominicana	26	Norma ambiental NA-RS-001-03	2003	49
40	NA świa a	27	Ley 225-20	2020	74
13	México	28	Norma oficial NOM-083-SEMARNAT	2003	16 7
14	Uruguay	29	Decreto 182	2013	
15	Draoil	30 31	Ley N° 19829	2019	34 12
15	Brasil	32	Norma ABNT - NBR 13.896	1997	7
		33	Norma ABNT - NBR 8419 Norma ABNT - NBR 8849	1992 1985	9
16	Honduras	34	Acuerdo Nº 378	2001	10
10	Horiduras	35	Acuerdo N 378 Acuerdo Eiecutivo Nº 1567	2010	16
17	El Salvador	36	Decreto Nº 42	2000	11
18	Cuba	37	Norma Técnica NC 135	2000	8
19	Guatemala	38	Norma Técnica NC 133	2016	5
13	Guatemala	39	DIGARN-DEMARDS 09	2019	4
		40	Acuerdo Gubernativo No.164-2021	2021	23
	<u> </u>	41	Norma Técnica DRPSA-004-2021	2021	25
20	Puerto Rico	42	Reglamento 5717	1970	50
		43	Reglamento SRS	2020	168

Conecta. Actúa. Transforma

La transición ecológica empieza en tu ciudad

